返回列表 回复 发帖
大家试试这个
未命名.GIF
相关资料:

Exotische limietverzamelingen11.part1.rar (200 KB)

Exotische limietverzamelingen11.part2.rar (200 KB)

Exotische limietverzamelingen11.part3.rar (102.76 KB)

101# xiaongxp
看不懂,中国研究分形的人太少了,想查阅相关资料都找不到
下面这个程序也看不懂,是否与此问题有关

Kleinian Double Cusp Group - Mathematica 4.2, POV-Ray 3.6.1, 8/10/05
Here is my first attempt to create a double cusp group as described in the book Indra’s Pearls. Thanks to Dr. William Goldman for helping me get started with this. I hope to improve this code when I find some spare time.
(* runtime: 10 seconds *)
ta = 1.958591030 - 0.011278560I; tb = 2; tab = (ta tb + Sqrt[ta^2tb^2 - 4(ta^2 + tb^2)])/2;
z0 = (tab - 2)tb/(tb tab - 2ta + 2I tab);
a = {{ta, (ta tab - 2tb + 4I)/((tab + 2)z0)}, {(ta tab - 2tb - 4I)z0/(tab - 2), ta}}/2;
b = {{tb - 2I, tb}, {tb, tb + 2I}}/2; A = Inverse[a]; B = Inverse;
Affine[{z1_, z2_}] := z1/z2; Fix[M_] := Affine[Eigenvectors[M][[1]]];
z1 = Fix; z2 = Affine[A.{z1, 1}]; z3 = Fix[A.B.a.b];
ToMatrix[{z_, r_}] := (I/r){{z, r^2 - z Conjugate[z]}, {1, -Conjugate[z]}};
C0 = ToMatrix[{x0 + I y0, r}] /. Solve[Map[(Re[#] - x0)^2 + (Im[#] - y0)^2 == r^2 &, {z1,z2, z3}], {x0, y0, r}][[2]];
Reflect[C_, n_] := Module[{M = {a, b, A, B}[[n]]}, {M.C.Inverse[Conjugate[M]], n}];
Children[{C_, n_}] := Map[Reflect[C, #] &, Delete[Range[4], {3, 4, 1, 2}[[n]]]];
Orbit[1] := {Reflect[C0, 1],Reflect[C0, 3]}; Orbit[depth_] := Flatten[Map[Children, Orbit[depth - 1]], 1];
ToCircle[{{a_, b_}, {c_, d_}}] := Module[{z = a/c}, Circle[{Re[z], Im[z]}, Chop[I/c]]];
Show[Graphics[Map[ToCircle[#[[1]]] &, Orbit[10]]],AspectRatio -> 1, PlotRange -> 60{{-1, 1}, {-1, 1}}];

Links
Explanation - by David J. Wright, coauthor of Indra’s Pearls
Kleinian Gallery - by Jos Leys
Limit Sets - interesting animations by Jeffrey Brock, see his 3D bending
Indra’s Pearls course - Kleinian groups with David Wright
102# xyj200909
你我发的这两则呀,一个文字似“鸟文”(不知是哪国文),一个代码似“天书”,我“睁眼瞎”一个,就等高人现身了。
102# xyj200909


mathematica运行的结果:

未命名-1.png (16.97 KB)

未命名-1.png

101# xiaongxp


xiaongxp老师能否给出资料的出处。
106# math
已经记不清是哪个网了,我曾访过的还有:
http://www.science.uva.nl/studen ... op-december2005.pdf
http://www.fractalsciencekit.com/
105# math


此图虽然不是资料中的图,但应该是同一类,老师们能否翻译出这个程序的数学表达式
107# xiaongxp


原来又是这是软件中的范例,只有changxde老师能看得懂了。这里应该又是经过变换后得来的吧:

12.JPG (27.65 KB)

12.JPG

ex - Kleinian Group Attractor.rar (4.99 KB)

可以先做这个:
chains = {N[Append[Table[{{2E^(I theta), Sqrt[3]}}, {theta, Pi/6, 9Pi/6, 2Pi/3}], {{0, 2 - Sqrt[3]}}]]};
Reflect[{z2_, r2_}, {z1_, r1_}] := Module[{a = r1^2/((z2 -z1)Conjugate[z2 - z1] - r2^2)}, {z1 + a (z2 - z1), a r2}];
Do[chains = Append[chains, Table[Map[Reflect[#, chains[[1, j, 1]]] &, Flatten[Delete[chains[], j], 1]], {j, 1, 4}]], {i, 1, 6}];
Show[Graphics[Table[{GrayLevel[i/6], Map[Disk[{Re[#[[1]]], Im[#[[1]]]}, #[[2]]] &, chains[], {2}]}, {i, 1, 6}], AspectRatio -> 1, PlotRange -> {{-1, 1}, {-1, 1}}]];
109# math
这是一个IFS分形,用到茂比乌斯变换,帮助中的e文看不懂,另外还有梅老师推荐的那本书http://www.inrm3d.cn/viewthread.php?tid=1171&extra=page%3D1%26amp%3Bfilter%3Ddigest中也有这个内容.可惜也是e文.
返回列表