返回列表 回复 发帖
以前研究过的J集,今重新调色,觉得亲切.
未命名.JPG
再扫另一个味道的图:
未命名.JPG
未命名.JPG
未命名.jpg
未命名.jpg
RMExpiLin.gsp (44.32 KB)
RMExpiNMp-O.gsp (45.37 KB)
未命名.jpg
柳烟作品:J集:
未命名.jpg
未命名.jpg
未命名.jpg
未命名.jpg
絮我调色不行,但这些J集结构颇不错的.
柳烟作品:N集:
未命名.jpg
征解:
Fractal2.png
着色代码:
dmj-Lyapunov {
;
; This algorithm computes the Lyapunov exponent
; for Mandelbrot types. This exponent is usually
; negative for divergent orbits (outside points),
; and positive for convergent orbits (inside
; points).
;
; This might have interesting results when used
; with other fractal types, although the results
; would not be mathematically accurate.
;
; Optimizations suggested by Charles Vassallo.
;
init:
  float oldsum = 0
  float sum = 1
  float v = 0
  float il = 1/log(real(@power))
  float lp = log(log(@bailout)/2.0)
  float f = 0.0
  
loop:
  IF (@trackvariable == 0)                ; |z|
    v = cabs(#z)
  ELSEIF (@trackvariable == 1)                ; real(z)
    v = real(#z)
  ELSEIF (@trackvariable == 2)                ; imag(z)
    v = imag(#z)
  ELSEIF (@trackvariable == 3)                ; real(z)/imag(z)
    v = real(#z)/imag(#z)
  ELSEIF (@trackvariable == 4)                ; imag(z)/real(z)
    v = imag(#z)/real(#z)
  ELSEIF (@trackvariable == 5)                ; arg(z)
    v = atan2(#z)
  ELSEIF (@trackvariable == 6)                ; 1/real(z)
    v = 1.0/real(#z)
  ELSEIF (@trackvariable == 7)                ; 1/imag(z)
    v = 1.0/imag(#z)
  ENDIF

  oldsum = sum
;  sum = sum + log(abs(2*v))                ; sum the Lyapunov exponent (slow method)
  sum = sum * (abs(2*v))                ; sum the Lyapunov exponent
  
final:
  oldsum = log(oldsum)
  sum = log(sum)
  IF (@negative == 1)
    sum = -sum/#numiter
    oldsum = -oldsum/(#numiter-1)
  ELSEIF (@negative == 2)
    sum = abs(sum/#numiter)
    oldsum = abs(oldsum/(#numiter-1))
  ELSE
    sum = sum/#numiter
    oldsum = oldsum/(#numiter-1)
  ENDIF
  IF (@smooth)
    f = il*lp - il*log(log(cabs(#z)))
    #index = oldsum + (sum-oldsum) * (f+1)
  ELSE
    #index = sum
  ENDIF

default:
  title = "Lyapunov"
  helpfile = "dmj-pub\dmj-pub-uf-lyapunov.htm"
  
  param trackvariable
    caption = "Variable to Track"
    default = 0
    enum = "magnitude of z" "real part of z" "imaginary part of z" \
           "real / imag" "imag / real" "angle of z" "1 / real(z)" "1 / imag(z)"
    hint = "Indicates which variable to measure the Lyapunov exponent for."
  endparam
  param negative
    caption = "Sign"
    default = 2
    enum = "positive" "negative" "absolute value"
    hint = "Affects the sign of the exponent.  'Negative' and 'absolute \
            value' are useful for inside coloring."
  endparam
  param power
    caption = "Exponent"
    default = 2.0
    hint = "This should be set to match the exponent of the \
            formula you are using.  For Mandelbrot, this is 2."
  endparam
  param bailout
    caption = "Bailout"
    default = 1e20
    min = 1
    hint = "This should be set to match the bailout value in \
            the Formula tab.  Use a very high bailout!"
  endparam
  param smooth
    caption = "Smooth Coloring"
    default = false
    hint = "If set, results will be 'smoothed' to hide iteration bands."
  endparam
}
这是我几天前扫出的魇品,有个别的芽苞上乌龟肚腹上没有圆圈,而没达到UF中的每个芽苞上有圈圈.怪哉的是,我重新弄,反而连各别乌龟上的圆圈圈都弄不出来了,真是活见鬼.
未命名.JPG
未命名.jpg
这是柳某演绎Uf的作品.
未命名.jpg
返回列表