返回列表 回复 发帖

可否作出这样的曲面

在平面多边形ABCDE的边界上任取两点 P(x1, y1) 、Q(x2, y2) ,作出它们在三维空间中所对应的点 ((x1+x2)/2, (y1+y2)/2, √(x1-x2)^2+(y1-y2)^2),由这些点形成的曲面 。换句话说,把多边形放在水平面 z=0 上,对于多边形上的每一组无序点对P 、Q ,在线段 PQ 中点的正上方 |PQ| 处作一个点,由这些点形成的曲面,再把这个多边形本身加进去,就得到一个三维空间中的封闭曲面。
多点驱动?
在这里看到的:
http://www.matrix67.com/blog/archives/3011
那个曲面想象不出来!
还真是“巧妙到了诡异的地步”,应该能作出这个曲面。
是啊,诡异得很,帮个忙作一个饱饱眼福,看看它究竟是个啥玩意儿!
是这个吗?“曲面与自身相交”是什么意思?
自交曲面.gif

自交曲面.sgf (3.09 KB)

应该是这个了,inRm3D强大!
是这个吗?“曲面与自身相交”是什么意思?
3477
inRm 发表于 2010-4-1 21:52
进一步领教了轨迹面。两点驱动的范例啊。
周老师: 麻烦您把#6的作图方法介绍一下,如何用两点驱动来作轨迹面?谢了!
1、在平面内作四个点。2、用路径工具作这四个点的路径。3、在这个路径上依次作约束点E、F。5、作E、F的中点G与EF线段。6、用平移工具作点G的平移点G‘,G’点的属性中dx、dy设为0、dz关联线段EF。7、用轨迹工具作G‘点与F点的轨迹,此时可以调整约束点F的步长让轨迹更细致一些。9、用轨迹面工具作第8步生成的轨迹线与约束点E的轨迹面。10、OK!
无欲则刚!凡人不烦!
返回列表