这是此坛大家讨论过的复分形,以前看大家的讨论帖子,似懂非懂。现在再研究之,由迷糊到清晰,有些收获,今放到此,望起到抛砖引玉的作用。
The Mandelbrot set for (1 - z2)/(z - z2cos(z)) + cM20160817{
;
; Generic Julia set.
;
init:
c =3*#pixel
z=1.5445654699195
loop:
z0=z
z =(1-z^2)/(z-z^2*cos(z)) +c
z =(1-z^2)/(z-z^2*cos(z)) +c
bailout:
|z-z0| >= @bailout&&|z|<=120
default:
title = "The Mandelbrot set for (1 - z2)/(z - z2cos(z)) + cM"
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\julia.html"
$IFDEF VER50
rating = recommended
$ENDIF
param bailout
caption = "Bailout value"
default = 0.00001
min = 0.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}
c =3*#pixel
z=1.5445654699195
loop:
z0=z
z =(1-z^2)/(z-z^2*cos(z)) +c
z =z^2 +c
bailout:
|z-z0| >= @bailout&&|z|<=13
default:
title = "M201608191644"
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\julia.html"
$IFDEF VER50
rating = recommended
$ENDIF
param bailout
caption = "Bailout value"
default = 0.00001
min = 0.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}