- UID
- 4723
- 帖子
- 752
- 精华
- 5
- 积分
- 1778
|
83# 29678417
Point Locus defined by a point driver被一个点驱动定义的点的轨迹
0 ≤ t ≤ 1
--------------------------------------------------------------
解读:S是轨迹上一点,对应位置值t,三点0,1,t形成三点的比。
【“这里的位置值可以解读为S点走过的路程占总路程的百分比”。】这句话是不对的我的疏忽。以改正。
但是这部分:S是轨迹上一点,对应位置值t,三点0,1,t形成三点的比。
是对的。
附:这个图就是解读为什么一个点驱动另一个点的轨迹时,点对轨迹的值的范围是区间[0,1].
我们想想利用几何画板画线,画圆,画轨迹其实后台都有一个坐标系。我不相信几何画板的函数图形,轨迹等等图形不是用解析法产生的,你看不见坐标系不等于它在后台没有坐标系。既然是解析法产生的图形,那么它的一切量肯定和坐标系有关,从而和坐标有关,而坐标都可以用原点,单位,和另一个点这样的共线三点的比来解读。小坐标系的sin前面的系数应为2 /3,打错的。左面的小坐标系其实直接画在轨迹上是最恰当的,之所以画在左面是为了更醒目。
按这个思路,我们想想如果我们用圆规工具画个园,仅管你看不到圆的方程,你完全可以想象假如后台是用的参数方程x=rsin(t),y=rcos(t),点对圆的值意味着什么?
然后在点对函数图形,点对参数的图形,联系在一起看你会发现什么?我不下结论,你自己去下把。
当我们对圆规工具画的圆完成了想象后,就可以说原来:点对圆的值等于弧长之比是特例,等于圆心角的比才更具有普遍性。区间[a,b]和说线段是一回事。一个强调形,一个强调数,体现了数形结合。
这些是我个人观点,仅供参考,不一定对。错了我就改正。就像上面一样。 |
|