反演变换下的M集,见前面楼层向老师原创意。今将其编成UF代码,在UF中玩了一把,颇有意思的。将z^2+c中对c换成1/c,只不过是其特例。大家有兴趣,可将其代码拿到Uf中玩玩。
反演变换下的Mandelbrot {
init:
z = @start
a=real(@O)
b=imag(@O)
xc=real(14*#pixel)
yc=imag(14*#pixel)
x1=a+@r^2*(xc-a)/((xc-a)^2+(yc-b)^2)
y1=b+@r^2*(yc-b)/((xc-a)^2+(yc-b)^2)
m=x1+flip(y1)
loop:
z = z^@power +m
bailout:
|z| <= @bailout
default:
title = "反演变换下的Mandelbrot"
center = (1.5, 0)
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\mandelbrot.html"
$IFDEF VER50
rating = recommended
$ENDIF
param start
caption = "Starting point"
default = (0,0)
hint = "The starting point parameter can be used to distort the Mandelbrot \
set. Use (0, 0) for the standard Mandelbrot set."
endparam
param power
caption = "Power"
default = (2,0)
endparam
param O
caption = "O"
default = (-2,0)
endparam
param r
caption = "r"
default =2.00
endparam
float param bailout
caption = "Bailout value"
default = 123.0
min = 1.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
}
|