这是此坛大家讨论过的复分形,以前看大家的讨论帖子,似懂非懂。现在再研究之,由迷糊到清晰,有些收获,今放到此,望起到抛砖引玉的作用。
The Mandelbrot set for (1 - z2)/(z - z2cos(z)) + cM20160817{
;
; Generic Julia set.
;
init:
c =3*#pixel
z=1.5445654699195
loop:
z0=z
z =(1-z^2)/(z-z^2*cos(z)) +c
z =(1-z^2)/(z-z^2*cos(z)) +c
bailout:
|z-z0| >= @bailout&&|z|<=120
default:
title = "The Mandelbrot set for (1 - z2)/(z - z2cos(z)) + cM"
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\julia.html"
$IFDEF VER50
rating = recommended
$ENDIF
param bailout
caption = "Bailout value"
default = 0.00001
min = 0.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}作者: 柳烟 时间: 2016-8-18 22:17
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}
c =3*#pixel
z=1.5445654699195
loop:
z0=z
z =(1-z^2)/(z-z^2*cos(z)) +c
z =z^2 +c
bailout:
|z-z0| >= @bailout&&|z|<=13
default:
title = "M201608191644"
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\julia.html"
$IFDEF VER50
rating = recommended
$ENDIF
param bailout
caption = "Bailout value"
default = 0.00001
min = 0.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}作者: 柳烟 时间: 2016-8-19 18:56
定位:0.44136818689914+0.136526563444065 i
放大倍数:9558.8151
c =3*#pixel
z=-1.663892103
loop:
z0=z
z =(1-z^2)/(z-z^2*sin(z)) +c
z =(1-z^2)/(z-z^2*sin(z)) +c
bailout:
|z|<=23&&|z-z0|>=0.00001
default:
title = " M201608201639"
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\julia.html"
$IFDEF VER50
rating = recommended
$ENDIF
param bailout
caption = "Bailout value"
default = 0.00001
min = 0.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}作者: 柳烟 时间: 2016-8-20 20:00
c =3*#pixel
z=-2.735865250I
loop:
z0=z
z =(1-z^2)/(z-z^2*tan(z)) +c
z =(1-z^2)/(z-z^2*tan(z)) +c
bailout:
|z|<=12&&|z-z0|>=0.00003
default:
title = " M201608211034"
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\julia.html"
$IFDEF VER50
rating = recommended
$ENDIF
param bailout
caption = "Bailout value"
default = 0.00001
min = 0.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}作者: 柳烟 时间: 2016-8-22 13:44
The Mandelbrot set for (1 - z2)/(z - z2cos(z)) + cM20160817{
;
; Generic Julia set.
;
init:
c =3*#pixel
z=sqrt(1.5445654699195-c)
loop:
z0=z
z=z^2+c
z =(1-z^2)/(z-z^2*cos(z)) +c
z =(1-z^2)/(z-z^2*cos(z)) +c
bailout:
|z-z0| >= @bailout&&|z|<=12
default:
title = "The Mandelbrot set for (1 - z2)/(z - z2cos(z)) + cM"
helpfile = "Uf*.chm"
helptopic = "Html\formulas\standard\julia.html"
$IFDEF VER50
rating = recommended
$ENDIF
param bailout
caption = "Bailout value"
default = 0.00001
min = 0.0
$IFDEF VER40
exponential = true
$ENDIF
hint = "This parameter defines how soon an orbit bails out while \
iterating. Larger values give smoother outlines; values around 4 \
give more interesting shapes around the set. Values less than 4 \
will distort the fractal."
endparam
switch:
type = "Mandelbrot"
power = power
bailout = bailout
}作者: 柳烟 时间: 2016-8-23 12:31
定位:0.17015934857325325+-1.341987480044379e-9 i
放大:44432004
网站给出的程序:
Mandelbrot {
global:
float p = 0.26 ;parameter
float deg = 4 ;degree of the polynomial
float v = 1 / log(deg)
float g = 10 * log(10)
float r = exp(g) ;square of the radius of the bail-out circle
u = log(g)
float tb = sqr(@thick / (1000 * #magn)) ;for the thickness of the boundary
float h = 1 / (1500 * #magn * @width) ;a very small real number
init:
complex z = 0 ;critical point
complex zd = 0 ;the sequence of the derivatives
complex z1 = 0
float w = 0
int n = 0
while n < #maxit && |z| < r
n = n + 1
z1 = z^2/2 + p*z^4
zd = ((z+h)^2/2 + p*(z+h)^4 - z1) * zd / h + 1
z = z1 + #pixel
endwhile
if n == #maxit || sqr(log(|z|)) * |z| < tb * |zd|
w = -1
else
w = n - v * (log(log(|z|)) - u)
endif
;begin fictive loop
z = 0
n = 0
loop:
n = n + 1
z = z + #pixel
if n == 1
z = w
endif
bailout:
n < 1
;end fictive loop
default:
title = "Mandelbrot"
maxiter = 100
param thick
caption = "boundary"
default = 1.0
endparam
param width
caption = "width"
default = 640
endparam
}
下面是作色算法:
Gradient {
final:
float s = real(#z)
float u = 0
if s < 0
#solid = true
else
u = (@dens * s + @disp) / 100
#index = u - trunc(u)
endif
default:
title = "Gradient"
param disp
caption = "displace"
default = 0
endparam
param dens
caption = "density"
default = 1.0
endparam
}作者: lnszdzg100 时间: 2016-8-26 15:46
The two programs can be copied and inserted in an empty formula and colouring document, respectively. We have inserted the polynomial {\displaystyle z^{2}/2+p*z^{4}+c} {\displaystyle z^{2}/2+p*z^{4}+c} of degree 4, where p is a real parameter. The picture shows a section of the Mandelbrot set for p = 0.26.作者: 柳烟 时间: 2016-8-26 20:40
param bailout
caption = "Bailout"
default = 0.00001
$IFDEF VER40
exponential = true
$ENDIF
hint = "Bailout value; smaller values will cause more \
iterations to be done for each point."
endparam
switch:
type = "NovaJulia"
seed = #pixel
power = @power
bailout = @bailout
relax = @relax
}
param bailout
caption = "Bailout"
default = 0.00001
$IFDEF VER40
exponential = true
$ENDIF
hint = "Bailout value; smaller values will cause more \
iterations to be done for each point."
endparam
param bailout
caption = "Bailout"
default = 0.00001
$IFDEF VER40
exponential = true
$ENDIF
hint = "Bailout value; smaller values will cause more \
iterations to be done for each point."
endparam
switch:
type = "NovaJulia"
seed = #pixel
power = @power
bailout = @bailout
relax = @relax
}
param bailout
caption = "Bailout"
default = 0.00001
$IFDEF VER40
exponential = true
$ENDIF
hint = "Bailout value; smaller values will cause more \
iterations to be done for each point."
endparam
switch:
type = "NovaJulia"
seed = #pixel
power = @power
bailout = @bailout
relax = @relax
}
GSP中扫一张