返回列表 回复 发帖
牛顿J集
6014
我试了那个软件也没找到那个图,要能从软件上找到就好了。
changxde 发表于 2010-7-11 20:28
你把这个文件在软件中打开:

Experiments.rar (3.16 KB)

48# 柳烟
好!!!
柳老师真有毅力,令人佩服。
原图有四岔,合并点的分子分母的c的方次应分别为4、2,可能改的应是系数或在分子添项c^2。请说说sqrt((c^2+1)/(3c))的来历。
52# xiaongxp
我是抱着试一试,随便弄个c的函数,结果得到那图的.向老师帖的美图中的十字与前面板友的二阶导数的牛集的十字很相象,看了美图程序中的二阶导数,不明白这二阶导数究竟与这J集二者的联系,如何用?这是解决问题的关健.
好象是要经过一个变换才能得到那个图形:comment:
  
  Implements a transformation based on the composite function:
  
    z = G(F(z))
   
  Both F abd G are applied relative to a conjugating map
  defined as a Mobius transformation. For example, we define
  the conjugation of F with respect to the conjugating map
  MapF as:
  
    z = Mobius.TransformPoint(MapF, F(Mobius.InverseTransformPoint(MapF, z)))
  
  a similar conjugation is defined for G. Finally, the
  composite function is applied Power times to z.
  
global:
  '
  ' Initialize conjugating maps MapF and MapG.
  '
  const Mobius MapF = Mobius.Identity()
  const Mobius MapG = Mobius.Identity()
  const Complex ApplyMapF = ShiftF <> 0 || AngleF <> 0 || ScaleF <> 1 || InvertF
  const Complex ApplyMapG = ShiftG <> 0 || AngleG <> 0 || ScaleG <> 1 || InvertG
  
  if (ApplyMapF) {
    Mobius.Translate(MapF, ShiftF)
    Mobius.Rotate(MapF, DegreeToRadian(AngleF))
    Mobius.Scale(MapF, ScaleF)
   
    if (InvertF) {
      Mobius.ApplyInversion(MapF)
    }
  }
  if (ApplyMapG) {
    Mobius.Translate(MapG, ShiftG)
    Mobius.Rotate(MapG, DegreeToRadian(AngleG))
    Mobius.Scale(MapG, ScaleG)
   
    if (InvertG) {
      Mobius.ApplyInversion(MapG)
    }
  }
  
transform:
  
  if (ApplyMapF) {
    z = Mobius.TransformPoint(MapF, F(Mobius.InverseTransformPoint(MapF, z)))
  } else {
    z = F(z)
  }
  if (ApplyMapG) {
    z = Mobius.TransformPoint(MapG, G(Mobius.InverseTransformPoint(MapG, z)))
  } else {
    z = G(z)
  }
  z *= Scale
  
properties:
  
  #include ComplexFunctions
  
  divider {
    caption = "General"
  }
  option Scale {
    type = Float
    caption = "Scale"
    details = "Scale factor applied to composite value"
    default = 1
  }
  divider {
    caption = "F(z)"
  }
  option F {
    type = ComplexFunctions
    caption = "F(z)"
    default = Pow2
  }
  divider {
    caption = "Conjugating map applied to F(z)"
  }
  option ShiftF {
    type = Complex
    caption = "Shift"
    details = "Translation component"
    default = 0
  }
  option ScaleF {
    type = Float
    caption = "Scale"
    details = "Scale factor"
    default = 1
  }
  option AngleF {
    type = Float
    caption = "Angle"
    details = "Angle of rotation"
    default = 0
    range = [-360,360]
  }
  option InvertF {
    type = Boolean
    caption = "Invert"
    details = "Apply complex inversion"
    default = False
  }
  divider {
    caption = "G(z)"
  }
  option G {
    type = ComplexFunctions
    caption = "G(z)"
    default = Ident
  }
  divider {
    caption = "Conjugating map applied to G(z)"
  }
  option ShiftG {
    type = Complex
    caption = "Shift"
    details = "Translation component"
    default = 0
  }
  option ScaleG {
    type = Float
    caption = "Scale"
    details = "Scale factor"
    default = 1
  }
  option AngleG {
    type = Float
    caption = "Angle"
    details = "Angle of rotation"
    default = 0
    range = [-360,360]
  }
  option InvertG {
    type = Boolean
    caption = "Invert"
    details = "Apply complex inversion"
    default = False
  }
认真阅读源文件,成功破解,但着色仍需研究。

NN.JPG (31.54 KB)

NN.JPG

学习FSK.gsp (31.94 KB)

changxde老师太有才了!能上传源文件吗?
changxde老师 这样的文件都能看懂,厉害
changxde 确实厉害,为这东西,大家费了许多脑细胞,望changxde老师附上源文件,让板友们长点见识.
期待changxde的指导
上面我用推广的牛迭代公式作此题,开方运算有误,现在改正,效果如下

牛迭试验(纠错图).jpg (47.94 KB)

牛迭试验(纠错图).jpg

牛迭试验(改).gsp (18.39 KB)

各位板友,人在江湖,身不由已,我近个把月要出外,这段期间恐怕不能与各位聚首画坛,共研分形了.感谢各位的支持与帮助.向老师出的题,现在柳某研究了几天,仍无眉目.有板友破解,为你高兴.
这几天,我天天都关注受朋友们支持的帖子,希望大家慨慷些嘛.
以后,柳某提议,凡在我的帖子下跟帖的朋友,有图片,随之附上源文件,以方便大家学习,提高.
返回列表